Learning Nonlinear Principal Manifolds by Self-Organising Maps
نویسندگان
چکیده
This chapter provides an overview on the self-organised map (SOM) in the context of manifold mapping. It first reviews the background of the SOM and issues on its cost function and topology measures. Then its variant, the visualisation induced SOM (ViSOM) proposed for preserving local metric on the map, is introduced and reviewed for data visualisation. The relationships among the SOM, ViSOM, multidimensional scaling, and principal curves are analysed and discussed. Both the SOM and ViSOM produce a scaling and dimension-reduction mapping or manifold of the input space. The SOM is shown to be a qualitative scaling method, while the ViSOM is a metric scaling and approximates a discrete principal curve/surface. Examples and applications of extracting data manifolds using SOM-based techniques are presented.
منابع مشابه
On multidimensional scaling and the embedding of self-organising maps
The self-organising map (SOM) and its variant, visualisation induced SOM (ViSOM), have been known to yield similar results to multidimensional scaling (MDS). However, the exact connection has not been established. In this paper, a review on the SOM and its cost function and topological measures is provided first. We then examine the exact scaling effect of the SOM and ViSOM from their objective...
متن کاملBuilding Nonlinear Data Models with Self-Organizing Maps
We study the extraction of nonlinear data models in high dimensional spaces with modi ed self-organizing maps. Our algorithm maps lower dimensional lattice into a high dimensional space without topology violations by tuning the neighborhood widths locally. The approach is based on a new principle exploiting the speci c dynamical properties of the rst order phase transition induced by the noise ...
متن کاملOn the equivalence between kernel self-organising maps and self-organising mixture density networks
The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network ...
متن کاملAdaptive nonlinear manifolds and their applications to pattern recognition
Dimensionality reduction has long been associated with retinotopic mapping for understanding cortical maps. Multisensory information is processed, fused and mapped to an essentially 2-D cortex in an information preserving manner. Data processing and projection techniques inspired by this biological mechanism are playing an increasingly important role in pattern recognition, computational intell...
متن کاملSelf-Organizing Feature Maps with Self-Organizing Neighborhood Widths
Self-organizing feature maps with self-determined local neighborhood widths are applied to construct principal manifolds of data distributions. This task exempli es the problem of the learning of learning parameters in neural networks. The proposed algorithm is based upon analytical results on phase transitions in self-organizing feature maps available for idealized situations. By illustrative ...
متن کامل